Homology of closed geodesics in a negatively curved manifold

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed geodesics on positively curved Finsler spheres

In this paper, we prove that for every Finsler n-sphere (S, F ) for n ≥ 3 with reversibility λ and flag curvature K satisfying ( λ λ+1 )2 < K ≤ 1, either there exist infinitely many prime closed geodesics or there exists one elliptic closed geodesic whose linearized Poincaré map has at least one eigenvalue which is of the form exp(πiμ) with an irrational μ. Furthermore, there always exist three...

متن کامل

Self-intersections of Random Geodesics on Negatively Curved Surfaces

We study the fluctuations of self-intersection counts of random geodesic segments of length t on a compact, negatively curved surface in the limit of large t. If the initial direction vector of the geodesic is chosen according to the Liouville measure, then it is not difficult to show that the number N(t) of self-intersections by time t grows like κt2, where κ = κM is a positive constant depend...

متن کامل

On the Spectrum of a Finite-volume Negatively-curved Manifold

We show that a noncompact manifold with bounded sectional curvature, whose ends are sufficiently collapsed, has a finite dimensional space of square-integrable harmonic forms. In the special case of a finite-volume manifold with pinched negative sectional curvature, we show that the essential spectrum of the p-form Laplacian is the union of the essential spectra of a collection of ordinary diff...

متن کامل

Lipschitz Precompactness for Closed Negatively Curved Manifolds

We prove that, given a integer n ≥ 3 and a group π, the class of closed Riemannian n-manifolds of uniformly bounded negative sectional curvatures and with fundamental groups isomorphic to π is precompact in the Lipschitz topology. In particular, the class breaks into finitely many diffeo-

متن کامل

A Local Limit Theorem for Closed Geodesics and Homology

In this paper, we study the distribution of closed geodesics on a compact negatively curved manifold. We concentrate on geodesics lying in a prescribed homology class and, under certain conditions, obtain a local limit theorem to describe the asymptotic behaviour of the associated counting function as the homology class varies. 0. Introduction Let M be a compact smooth Riemannian manifold with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1987

ISSN: 0022-040X

DOI: 10.4310/jdg/1214441177